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Abstract

A solution to the homogeneous surface diffusion model has been developed and incorporated into a batch adsorption model based
on external boundary layer mass transport and homogeneous diffusion. The model has been extensively tested using three experimental
adsorption systems, namely, phenol on carbon, basic yellow dye on carbon and basic blue dye on silica. The effect of initial solute
concentration and adsorbent mass has been studied in 23 batch experiments, which have been modelled using the collocation solution
method to solve the homogeneous surface diffusion equation. The theoretical concentration decay curves show a high degree of correlation
with experimental data. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Adsorption may be defined as the selective removal of a
component of a fluid mixture by contacting the fluid with
a solid adsorbent. Applications include the purification of
drinking water, removal of colourants and the removal of
harmful pollutants from wastewater effluents. It also has
application in air pollution control and many processes in
chemical engineering.

Materials like activated carbon, silica, peat and wood/wood
meal with their porous structure provide a large specific
surface area for the adsorption of pollutant particles. Many
types of adsorption plant exist e.g. batch, fixed bed, moving
bed and development work on these systems is continu-
ously going. Much research is also being done investigating
the mechanisms and kinetics of adsorption. The adsorption
process is complex and considerable use is made of math-
ematical models to describe the possible rate-controlling
mechanisms. In addition computers are used to perform
accurate and quick evaluation of the model solutions. One
of the most widely used methods [1,2] for solving the dif-
fusion equation is the numerical Crank–Nicolson method
[3]. An alternative more simplified method [4,5] has been
applied and is solved using the convolution theorem and a
fourth order Runge–Kutta method. Orthogonal collocation
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has been applied to solve the diffusion equation using one
collocation point [6]. A number of workers, [7–9] using
a linear driving force approximation, developed improved
solutions to this particular case of homogeneous diffusion.
Accuracy of the prediction was a problem for these approxi-
mate solutions but more accurate methods of solution were
developed [10,11].

Several solutions are available in the literature for solv-
ing the homogeneous diffusion equation but the search for
accuracy, simplicity and reducing the number of limiting as-
sumptions continues. The present paper uses a single con-
stant surface diffusivity to generate theoretical concentration
decay curves for three sorption systems although it is fea-
sible to correlate surface diffusivity with surface coverage
[12–14]. The current paper restricts itself to using a single
surface diffusivity to study the application of the collocation
solution methodology. The model is simple and easy to use
and the assumption of a singleDs provides accurate solu-
tions for a wide range of adsorbents over a wide range of
experimental conditions.

The basis of the collocation solution to be presented in
this paper is the model proposed by Matthews and Weber [1]
and extended by McKay et al. [2] and McKay and Walters
[15].

This paper applies the collocation solution method to the
following batch adsorption systems: phenol on activated car-
bon, Basic Yellow dye 21 on activated carbon and Basic
Blue 69 on Sorbsil silica.
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Nomenclature

a, b isotherm parameters
Ap surface area of adsorbent particle (cm2)
C bulk liquid-phase concentration (mg/cm3)
Cs liquid-phase surface concentration (mg/cm3)
D diffusion coefficient (cm2/s)
erf error function
F, λ trial solution functions
kf external mass transfer coefficient (cm/s)
n number of integration steps
q average solid-phase concentration

(mg/g) or (mg/mg)
qi particle concentration (mg/g) or (mg/mg)
qs solid-phase surface concentration

(mg/g) or (mg/mg)
r distance within particle (cm)
R radius of adsorbent particle (cm)
t time period for adsorption (x)
1T time step-length
u integral solution f(x)
V volume of solution (cm3)
Vp volume of adsorbent particle (cm3)
W weight of adsorbent material (g) or (mg)
x dimensionless distance
x′ collocation point
1x distance step-length

Greek Symbols
β isotherm exponent
ε voidage of adsorbent particle
ρ density of adsorbent particle (mg/cm3)
τ dimensionless time
λ Crank–Nicholson parameter
λ0 lamda zero parameter

2. Theory

A model has been developed to solve diffusional mass
transport agitated batch adsorption systems. The present
method by collocation is one of the weighted residual meth-
ods [6], and is closely allied to finite element theory [16].
The method of collocation has been applied successfully
to solve a number of boundary-value problems [17,18] and
has been used extensively to solve transport and chemical
reactor problems where independent variables extend over
a finite domain [19,20]. The method basically consists of
choosing a trial solution containing several arbitrary con-
stants (for ordinary differential equations) and functions
(for partial differential equations) which are determined
by requiring the differential of the integral equation to be
satisfied according to some specified criteria. The method
is simple and, at least for ordinary differential equations
and some partial differential equations, has given accurate
results for very few arbitrary constants/functions.

Table 1
Redlich–Peterson isotherm constants

Solute Adsorbent a (dm3/g) b (dm3/mg) β

Phenol Carbon 11.3 0.069 0.920
Basic Yellow 21 Carbon 463.0 0.771 0.993
Basic Blue 69 Silica 0.43 0.020 0.990

The adsorption model assumes that the rate controlling
processes are mass transport across the boundary layer and
internal mass transport based on a homogeneous surface dif-
fusion model (HSDM). The boundary layer mass transport,
mass balance, homogeneous diffusion and equilibrium con-
ditions are represented by Eqs. (1)–(3), respectively

Vpρ(1 − ε)
dq

dt
= kf Ap(C − Cs)

1000
(1)

∂qi

∂t
= D

(
∂2qi

∂r2
+ 2

r

∂qi

∂r

)
(2)

The Langmuir, Freundlich and Redlich–Peterson isotherms
were analysed and the equation with the minimum error
function was selected, namely, the Redlich–Peterson equa-
tion. The three parameter Redlich–Peterson [20] equation
was selected to facilitate integration

qs = aCs

1 + bCβ
s

(3)

The values of the three constantsa, b andβ for each system
are given in Table 1.

The average concentration in the particleq, is given by
Eq. (4)

q = 3
∫ r

0 qiR
2dr

R3
(4)

The mass balance for the agitated batch adsorber is repre-
sented by

−V
dC

dt
= W

dq

dt
(5)

Integrating,

∫ Cn+1

Cn

dC = −W

V

∫ qn+1

qn

dq (6)

Therefore

Cn+1 = Cn − W

V
(qn+1 − qn) (7)

wheren signifies any point in time.
Eqs. (2) and (5) are subject to the following initial and

boundary conditions:

qi(r, 0) = 0; C(0) = C0 (8)

qi(R, t) = qs(t) (9)
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3. Model application and discussion

3.1. Solution implementation

The mathematical model necessitates the calculation ofq,
C, qs andCs in strict order and the collocation algorithm is
set up to perform the analysis in the order.

Dimensionless variablesτ and x are defined and intro-
duced for the independent variablest andr in the equations

τ = Dt

R2
(10)

x = r

R
(11)

and defining

u = xqi (12)

Now Eqs. (1)–(9) become

∂u

∂τ
= ∂2u

∂x2
(13)

u(0, τ ) = 0 = u(x, 0) andu(1, τ ) = qs(τ ) (14)

q(τ) = 3
∫ 1

0
u(x, τ )x dx (15)

dq

dτ
= 3kf R(C − Cs)

Dρ(1 − ε)
(16)

C = C0 −
(

W

V

)
q (17)

The basis of the collocation method is to choose a trial so-
lution for the differential equation under examination which
is consistent with the physical and mathematical constraints
imposed by the problem. In orthogonal collocation the trial
solution is expanded as a sum of products. One term of the
product is an arbitrary constant/function which is to be de-
termined. The other term is an orthogonal polynomial; the
trial solution is therefore expanded in terms of orthogonal
polynomials. These polynomials must also comply with the
constraints of the problem.

In the present work, it was therefore decided to apply the
method of cartesian collocation. The method employed took
as its trial solution the integral formulated exactly as in the
analytical solution of McKay et al. [2].

u(x, τ ) = f (τ)
{
e−λ(1−x)2 − e−λ(1+x)2

}
(18)

wheref(τ ) andλ(τ ) are average time functions to be deter-
mined. Since there are two unknowns then two equations are
required to solve for them. The first equation is the differ-
ential of u with respect tot and is obtained by substituting
Eq. (18) into the diffusion Eq. (13) noting that

∂u

∂τ
= f ′

{
e−λ(1−x)2 − e−λ(1+x)2

}

+f
{
−(1 − x)2λ′e−λ(1−x)2 + (1 + x)2λ′e−λ(1+x)2

}
(19)

The first differential ofu with respect tox is given in Eq. (20)

∂u

∂x
= f (τ)

{
2(1 − x)λe−λ(1−x)2 + 2(1 + x)λe−λ(1+x)2

}
(20)

The second order differential ofu with respect tox is given
by Eq. (21)

∂u2

∂x2
= f

{
−2λe−λ(1−x)2 + 2λe−λ(1+x)2

+4(1 − x)2λ2e−λ(1−x)2 − 4(1 + x)2λ2e−λ(1+x)2
}

(21)

The equation must be satisfied at somex=x′, x′ is the
collocation point, giving

f ′
{
e−λ(1−x′)2 − e−λ(1+x′)2

}

+f λ′
{
−(1 − x′)2e−1(1−x′)2 + (1 + x′)2e−λ(1+x′)2

}

=2f λ
{
−e−λ(1−x′)2 + e−λ(1+x′)2 + 2(1 − x′)2λe−λ(1+x′)2

−2(1 + x)2λe−λ(1+x)2
}

(22)

For the second equation, Eqs. (16) and (17) are combined
to give the condition
∫ 1

0

∂u(x, t)

∂t
xdx = kf R(C − Cs)

Dρ(1 − ε)
(23)

f ′
∫ 1

0

{
xe−λ(1−x)2 − xe−λ(1+x)2

}
dx

+λ′f
∫ 1

0

{
−x(1 − x)2e−λ(1+x)2+x(1 + x)2e−λ(1+x)2

}

× dx = kf R(C − Cs)

Dρ(1 − ε)
(24)

At some small initial timeτ1 is taken for the initial condi-
tion for Eqs. (22) and (24). In order to run the program it is
necessary to input an initial value for which has to provide
a stable solution value. At the beginning of the adsorption
process this criterion is most critical because the slope of
the concentration decay curve is at its maximum and there-
fore most sensitive. The relationship shown in Eq. (25) was
obtained by trial and error for several of the systems shown
in this research

λ(τ1) = λ0

4τ1
(25)

It is expected thatλ0 is a slowly varying function ofτ1,
almost constant for sufficiently smallτ1.
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The initial condition,f (τ1) for (22) and (24) is obtained
from (16) and (17) for sufficiently smallτ1

f (τ1)

∫ 1

0
x

{
e−λ(1−x)2 − e−λ(1+x)2

}
dx= τ1kf RC0

Dρ(1 − ε)
(26)

The integral in (26) is evaluated using standard methods
giving

f (τ1)

{ √
π

2
√

λ
erf(2

√
λ) − 1

2λ
+ e−4λ

2λ

}
= τ1kf RC0

Dρ(1 − ε)
(27)

where erf is the error function.
The ordinary differential Eqs. (22) and (24) are solved

simultaneously forf(τ ) andλ(τ ) and the boundary condition
for the surface concentration using (24) becomes

qs(τ ) = f (τ)
{
1 − e−4λ(τ)

}
(28)

The best fit data were those obtained by minimizing the error
function,F, as defined in Eq. (29)

F = 1

m

m∑
j=1

(
qexp − qtheo

qexp

)2

(29)

The set of equations are now ready for integration from
τ=τ1. The collocation algorithm now performs the solution
analysis in the order (i) followed by (ii).
1. Eq. (18) must be solved first and this requires the solution

of the pair of coupled ordinary differential collocation
Eqs. (19) and (20). These provide values forf(τ ) and
λ(τ ) in Eq. (18) at each time step. The functionf(τ ) is
also used to determine the surface concentration in the
solid phase using Eq. (28). Three methods were tested
to solve the pair of differential collocation equations,
namely a Gear Revision variable-order variable-step
Adams method, a Runge–Kutta–Merson method and
a variable-order variable-step Backward differentiation
formulae method. It was found that in the first two
methods the coupled equations were stiff, essentially
having a solution which varied rapidly. On this basis, in
order to make the solution stabilise quicker it was found
that the Backward differentiation formulae was the most
appropriate.

2. The liquid surface concentration and the asymptotic con-
centration, that is, the concentration at which adsorption
equilibrium has been achieved, were calculated using
Newton’s method for non-linear equations.
The objective now is to determine values forq, the aver-

age concentration of solute in the adsorbent particle,C, the
concentration of solute in the solution, andqs and Cs the
surface concentrations in the solid and liquid phases, respec-
tively. This enables two HSDM integrals to be solved and
theoretical concentration versus time curves to be generated.
The average particle concentration,q, the surface concentra-
tion in the solid phase,qs and the solution concentrationC
at each time step are calculated numerically using Eqs. (16),
(28) and (29), respectively. An internal check is made after

50 steps to see if the value ofqs is increasing. If it is not
the program/run is halted. The check is made at 50 steps be-
cause it is possible for theqs value to drop near the start and
then rise again. A numerical technique for calculating the
particle concentration over the particle’s radius at selected
times was also set up using the Eq. (18). The number of
distance steps1x, at which the concentration is evaluated
is specified by an input variable. This will correspond to a
set time interval,1τ , for integration. The distance step is
progressively decreased automatically increasing the num-
ber of integration steps. This procedure is adopted until two
consecutive sets of output data have converged to the same
limiting values. An alternative method of establishing the
accuracy of the integration to check the closure of the ma-
terial balance, that is, moles adsorbed in solid phase versus
moles removed from fluid phase.

3.2. Application of the model

The model has been developed to evaluate the integral
in Eqs. (19) and (23) and to give the theoretical concentra-
tion decay curve with the corresponding surface equilibrium
conditions using the two resistance approach, that is, exter-
nal mass transfer and solid phase surface diffusion. Initially,
the value of the external mass transfer coefficient was taken
from single resistance analysis values. The independent esti-
mation of the external mass transfer coefficient was obtained
using established techniques [22–24]. All the techniques for
determiningkf in batch adsorbers depend on some function
related to the initial slope of the concentration versus time
decay curve. Therefore, the accuracy inkf is related to the
severity of this slope. Application of the different techniques
indicate the maximumkf is±20%. Using this value ofkf and
an estimate of the solid diffusivity, together with: (i) particle
radius, (ii) solution volume, (iii) adsorbent mass, (iv) parti-
cle porosity, (v) adsorbent density, (vi) isotherm constants,
(vii) the value of time relating to the extent of time allowed
for adsorption and (viii) data relating to step length for in-
tegration; it is possible to obtain a theoretical decay curve.
By iterating between various solid diffusivity coefficients it
is possible to obtain a ‘best’ fit to the experimental decay
curves for batch adsorption.

The isotherm data are used in the form of the Redlich–
Peterson [21] isotherm Eq. (4) and the isotherm constants
for the three adsorption systems are shown in Table 1.

3.2.1. Adsorption of phenol on activated carbon
The adsorption of phenol onto activated carbon is the most

commonly used aqueous phase adsorption system reported
in the literature [25–28]. The experimental results shown in
Figs. 1 and 2 are based on work by Bino [29]. Fig. 1 shows
the experimental points compared with the theoretical curves
for three different initial phenol concentrations for an ad-
sorption contact period of 1 h. A constant surface diffusivity
was used for the modelling and the external mass transfer
coefficient and diffusion coefficient are presented in Table 2.
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Fig. 1. Effect of carbon mass on uptake of phenol.

The agreement between the experimental data and theoreti-
cally predicted curves is quite good. The main deviation is
at the highest carbon mass where the carbon surface area to
phenol mass ratio is very high. It is possible there may be
some surface reaction with the most active sites on the car-
bon or an alternative, more likely, reason is that over 1 h the
surface diffusion coefficient begins to change in magnitude.

Fig. 2 shows the effect of three different initial dye
concentrations for the adsorption of phenol onto activated
carbon. For the first 30 min the agreement is very good,
except for the lowest initial dye concentration which by

Table 2
External mass transfer coefficients and homogeneous solid diffusion coefficients

Solute Adsorbent C0 (mg/dm3) M (g) dp (mm) kf (10−5 m/s) Ds (10−14 m2/s)

Phenol Carbon 200 2.47 428 10±2 30±5
Phenol Carbon 200 3.40 428 10±2 30±5
Phenol Carbon 200 5.10 428 10±2 30±5
Phenol Carbon 200 0.85 428 10±2 30±5
Phenol Carbon 300 0.85 428 10±2 30±5
Phenol Carbon 400 0.85 428 10±2 30±5
BY21 Carbon 100 0.108 428 3.0±0.5 2.5±0.5
BY21 Carbon 100 0.216 428 3.0±0.5 2.5±0.5
BY21 Carbon 100 0.316 428 3.0±0.5 2.5±0.5
BY21 Carbon 100 0.425 428 3.0±0.5 2.5±0.5
BY21 Carbon 100 0.425 428 3.0±0.5 2.5±0.5
BY21 Carbon 75 0.425 428 3.0±0.5 2.5±0.5
BY21 Carbon 50 0.425 428 3.0±0.5 2.5±0.5
BY21 Carbon 25 0.425 428 3.0±0.5 2.5±0.5
BY69 Silica 200 8.5 605 0.2±0.02 1.2±0.2
BY69 Silica 200 12.7 605 0.2±0.02 1.2±0.2
BY69 Silica 200 17.0 605 0.2±0.02 1.2±0.2
BY69 Silica 50 17.0 605 0.2±0.02 1.2±0.2
BY69 Silica 100 17.0 605 0.2±0.02 1.2±0.2
BY69 Silica 150 17.0 605 0.2±0.02 1.2±0.2
BY69 Silica 200 17.0 605 0.2±0.02 1.2±0.2
BY69 Silica 250 17.0 605 0.2±0.02 1.2±0.2
BY69 Silica 300 17.0 605 0.2±0.02 1.2±0.2

Fig. 2. Effect of initial concentration for the adsorption of phenol on
carbon.

implication means the highest carbon surface area to dye
mass ratio, as in the data for varying carbon mass. How-
ever, as time increases it can be seen that the experimental
points begin to decrease more rapidly than the theoretically
predicted curves. It is possible that after an initial period
during which homogeneous solid surface diffusion is rate
controlling that the surface diffusion coefficient may be-
come variable in the rate determining step, that is, when a
significant fraction of the carbon surface is occupied.

Based on these observations it was decided that the or-
thogonal collocation solution should be tested using two
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Fig. 3. Effect of carbon mass for the adsorption of Basic Yellow 21 dye
onto activated carbon.

other adsorption systems. One system, using the same car-
bon adsorbent but the sorbate should be a larger adsorbing
molecule, in the present case a dyestuff, Basic Yellow 21.
The second system would be based on the adsorption of a
dyestuff, Basic Blue 69, onto a different adsorbent, namely,
Sorbsil silica. The experimental data for these two systems
were available, Al-Duri [30] and Aga [31], respectively.

3.2.2. Adsorption of Basic Yellow 21 dye onto carbon
The homogeneous solid phase diffusion model has been

used to simulate the results for the adsorption of Basic Yel-
low 21 onto activated carbon. Fig. 3 shows the effect of
varying carbon mass on the adsorption concentration versus
time decay curve for four carbon masses. The experimen-
tal data points are plotted as dimensionless concentration,
Ct/C0, against contact time. The theoretical concentration
decay curve shows excellent correlation up to almost 2 h, at
which time the experimental data points begin to fall more
rapidly at the two higher dye concentrations. As in the case
of phenol adsorption, it is likely that the surface diffusivity
begins to change as the adsorbent surface becomes saturated
or even pore diffusion starts to contribute to the adsorption
mechanism and the deviation between experimental and the-
oretical data occurs.

Fig. 4 shows the effect of initial dye concentration on the
concentration versus time decay curves. In all cases the cor-
relation between experimental and theoretical data is good.
This agreement is probably due to the fact that all the dye
concentrations are relatively low compared to the maximum
saturation capacity of 543 mg/g for activated carbon for Ba-
sic Yellow 21 [21]. All the concentration versus time con-
centration decay curves have been modelled using a constant
solid phase diffusivity as shown in Table 2.

3.2.3. Adsorption of Basic Blue 69 on Sorbsil silica
Sorbsil silica was selected as an alternative adsorbent to

activated carbon. Its structure is substantially different in
that it has only limited micropores, less than 20%, whereas
carbon has over 80% of its surface area in micropores. The

Fig. 4. Effect of initial dye concentration for the adsorption of Basic
Yellow 21 dye onto activated carbon.

model has been applied to the adsorption of Basic Blue
69 dye onto Sorbsil silica using the experimental data of
Aga [31]. Fig. 5 shows the effect of varying silica mass on
the concentration decay curves. The correlation between
experimental data points and the theoretical curves is very
good, particularly at lower contact times and higher silica
masses. After approximately 100 min, the trend is similar
to the previous two systems at lower silica surface area
to dye mass ratios, there is a slight deviation between the
solid line theoretical decay curve and the experimental data
points. The theoretical decay curves decrease slower than
the experimental data points. Figs. 6 and 7 show the effect
of six initial dye concentrations. The agreement between
experimental data points and theoretical concentration de-

Fig. 5. Effect of varying silica mass for the adsorption of Basic Blue 69
on silica (500–710mm).



G. McKay / Chemical Engineering Journal 81 (2001) 213–221 219

Fig. 6. Effect of initial dye concentration for the adsorption of Basic Blue
69 on silica.

cay curves is excellent and for the two highest initial dye
concentrations, that is the lowest silica surface area to dye
mass ratios, the experimental data points decrease faster
than the theoretical decay curves.

The rapid build up of solid surface phase concentra-
tion with time has created problems in solving previous
homogeneous surface diffusion models in handling small
increments in the driving force for mass transfer resulting
in unstable output. However, this problem can be overcome
in the present model by careful selection of the collocation
parameters and suitably small integration time increments.

Values of solid diffusivities have been given in Table 2
literature values include 8.9×10−14, 2.5×10−12 m2 s−1

for sodium laurylsulphonate and phenol, respectively [32];

Fig. 7. Effect of initial dye concentration for the adsorption of Basic Blue
69 on silica.

1.58×10−12, 1.7×10−12, 0.99×10−13 and 1.38×10−12

m2 s−1 for p-bromophenol, p-toluene sulphonate, do-
decyl benzene sulphonate and phenol, respectively [1];
1.7×10−11–1.9×10−11, 2.0×10−12–8.0×10−12, 4.0×10−12

–28×10−12, 5×10−12–11×10−12, 1.8×10−12–3.1×10−12,
and 0.1×10−8–0.3×10−8 m2 s−1 for p-nitrophenol, phenol,
p-chlorophenol, 2,4-dichlorophenol and dodecyl benzene
sulphonate, respectively [33]. All the previous results were
based on carbon adsorption and the range of values given
in the last reference are due to the effect of different ini-
tial solute concentrations influencing the surface diffusion
component. A value of 1.8×10−11 m2 s−1 was obtained by
Rice [34] for the adsorption of sodium chloride solution
on resin using a solid diffusion mechanism. However, the
value of the effective solid diffusivity obtained in this work
for a range of silica masses and initial dye concentrations
was 1.2±0.2×10−14 m2 s−1 which is of a similar order of
magnitude to the result for dodecyl benzene sulphonate,
a large organic molecule with some ionic character. The
adsorption rate is controlled by external mass transfer and
homogeneous surface diffusion. The experimental decay
curves were tested using film resistance models only [22,24]
during the analysis and evaluation of the external mass
transfer coefficient. In all cases, the adsorption rate was
only controlled by film mass transfer for the initial 2–5 min.
After this short initial period of theoretical film only con-
centration decay curve decreased much more rapidly that
the experimental concentration decay curve. The effective-
ness factor technique [35] was also used to confirm this
phenomenon. It is therefore apparent that surface diffu-
sion is the predominant rate controlling mechanism for the
majority of the adsorption process.

The results of the application of the orthogonal colloca-
tion model, presented in this paper, applying a constant solid
phase diffusivity to a range of sorption systems, produces
excellent agreement between the theoretical model and ex-
perimental data. At high surface coverage in Figs. 2, 3 and
5, the results of the present work suggest a variable surface
diffusivity may be applicable [36,37] or even contribution
from pore diffusion may be appropriate to several experi-
ments. In this case an effective diffusivity combining pore
and surface diffusion may be involved in the rate controlling
process.

Surface diffusion, studied in a ‘film-solid diffusion’ model
was found to be concentration dependent [30]. Komiyama
and Smith [28] found that surface diffusion contributed 20
times as much as pore volume diffusion. The maximum pore
diffusion contribution is 20%; in most cases it is 10% [39].
Therefore, surface diffusion has an inevitable effect on the
observed effective diffusivity which can be considered as a
‘lumped’ diffusivity that includes solid and pore diffusion
effects. This means that the internal diffusion rate for the
combined mechanism is given by

∂q

∂t
= Dp

∂C

∂r
+ ρsDs

∂q

∂r
(30)



220 G. McKay / Chemical Engineering Journal 81 (2001) 213–221

that is

∂q

∂t
=

(
Dp + ρsDs

∂q

∂C

)
∂C

∂r
(31)

However, for the ‘film-solid diffusion’ model the rate of
internal mass transfer is given by

∂q

∂t
= Deff

∂Ct

∂r
(32)

Hence

Deff = Dp + ρsDs
∂q

∂C
(33)

where Dp gives the pore diffusion contribution and
ρsDs(∂q/∂C) represents the contribution of surface diffu-
sion. ∂q/∂C is the slope of the adsorption isotherm. It is
a function of the initial sorbate concentration and theV/m
ratio. Following from the shape of isotherm it decreases
as initial concentration increases orV/m increases because
both lead to a higher equilibrium sorbate concentration
[33]. This leads to the following deductions:
1. Deff decreases with increasing initial solute concentra-

tion, as∂q/∂C decreases, it also decreases asV/m in-
creases for the same reason. This was obtained by Fritz
et al. [33] and possibly in the present study.

2. The relative importance of surface diffusion decreases as
the initial solute concentration increases. This was also
obtained by Komiyama and Smith [38], who found that
the ratioDsqe,t/DpεpCe,t decreases as the initial sorbate
concentration increases. Also the surface-pore contribu-
tion decreases from 5 to 1.2 as the initial concentration
changes from 25–100% saturation [39]. This confirms the
above point on the relative contributions from different
mechanisms.
Currently work is being carried out to develop a

pore-surface diffusion model. In addition a detailed techni-
cal comparison is being made between a number of solution
methods to the homogeneous solid phase diffusion model
by comparing outputs generated from the solution models
directly, rather than direct testing against experimental data
where the mechanism of adsorption is a major source of
controversy.

4. Conclusions

The collocation method has proved successful in solving
the homogeneous diffusion model for three adsorption sys-
tems. Experimental data points and theoretically predicted
concentration decay curves are in good agreement within the
constraints imposed of the model, which are: firstly, only ho-
mogeneous solid phase diffusion is taking place, secondly,
the solid phase diffusion coefficient has been maintained
constant for any particular sorption system.

The model has successfully been applied to three adsrop-
tion systems. The adsorption of phenol, a reasonably small

organic molecule onto activated carbon and the adsorption of
a much larger dye molecule onto carbon both give excellent
correlation between the experimental data and theoretical
predictions. The third system is a large organic dye molecule
also but the adsorbent, silica, is not as heterogeneous as the
activated carbon and also not as microporous, but the model
still provides excellent correlation to the experimental data.
Therefore, this orthogonal collocation solution for HSD can
be applied to a range of different solutes and adsorbents.
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